The concept of "Sustainability" and Sustainable Innovation: An attempt to reconceptualize

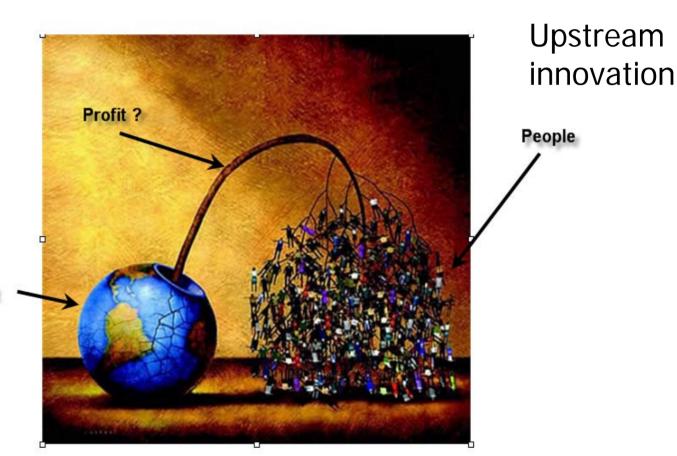
Lecture presented at NIAS (www.nias.nl) (Netherlands Institute for Advanced Science) December 16, 2004

René J. Jorna

Professor of Knowledge Management and Cognition; Faculty of Management and Organization
University of Groningen, Groningen, Netherlands
E-mail: r.j.j.m.jorna@bdk.rug.nl

Acknowledgements

- Members of the research project were:
 - Jo van Engelen (University of Groningen
 - Niels Faber (University of Groningen)
 - Henk Hadders (GGZ Drenthe)
 - Arnout van Diem (Biosoil)
 - Else Boutkan (Something Else)
 - and many others


- 1. Introduction
- 2. The concept of "sustainability"
- 3. Sustainability in practice: The NIDO program
- 4. The operationalization of sustainability
- 5. Conclusions, but also questions

Downstream innovation

Planet

1. Introduction (facts)

- Some "depressing" facts:
 - More than 800 million people are extremely underfed; 600 children p/h die of hunger?
 - 40% of the world population has never used a telephone (line)
 - Melting of the North pole (and Greenland), will give a water level rise of 50-150 cm in the North Sea
 - NL 2004: to continue 3% growth, 30-50 % decrease of social net (structure) is necessary the next 25 years
 - USA 2004: Until 2008 USA will not participate in any environmental treaty

Context of our sustainability research:

- NIDO: National Initiative Sustainable Development (Stichting); duration promised 1999 - 2007; closed December 31, 2004 (www.nido.nu)
- 10 programs: on marketing, water, finance, outsourcing, innovation, etc.

Basic assumptions for NIDO:

- practice before theory; network organization
- process, not product; private-public combinations
- not the usual "environmental" and technology, but knowledge, learning, enhancing knowledge infrastructure

- NIDO program: Knowledge creation for Sustainable *Innovation*
 - Innovation: The introduction of something "new" for an organization (organization, product, process, service) (reference group: West & Farr, 1990)
 - Innovation: Creative destruction (Schumpeter)
 - Innovation: invention/creation & implementation (individual and group)

1. Introduction (NIDO-KDI)

- Besides Innovation, also Sustainability and Knowledge
 - Knowledge of Sustainability and Sustainability of Knowledge (to be explained later)
 - Sustainability: conceptual (theory) and practical
 - 13 different organizations, different innovations
 - 50 researchers and consultants
 - Nov. 2002 Sept. 2004

2. Sustainability: the concept

- New hype: sustainability? No, since 1750; See Naess, Meadows; but J. Simon, Lomborg;
- What is sustainability? (Dutch: duurzaamheid; Deutsch: nachhaltigkeit; French: durabilité)
- Between 1960 and 2000:
 - Number of conceptual definitions: 35
 - Number of operational definitions (indicators): 580
- Is it possible to find developments in the concept itself?

2. Sustainability: artefact

- "Sustainability" concerns artificial or humanmade systems, not natural systems (H.Simon)
 - Artificial systems: described in terms of function, objective, and adaptation; are able to imitate natural systems without being natural themselves
- Sustainability is a dynamic systems notion
 - System: an assemblage of inter-related elements comprising a unified whole
 - Dynamic system: in mathematics a deterministic process in which a value changes over time according to a rule that is defined in terms of the function's current value.

2. Sustainability: definitions

Some definitions:

- Sustainable development (WCED, 1987)
 - "Development that meets the needs of the present without compromising the ability of future generations to meet their own needs"
- Elkington (1999): Triple P (planet, people, profit)
 - "Finding a balance between economic prosperity, environmental quality, and - the element which business has tended to overlook - social justice, moves organisations in an absolute state of sustainability".
- Coomer (1979)
 - "The sustainable society is one that lives within the selfperpetuating limits of its environment."
- Question: Why so many definitions?

2. Sustainability: analysis

- Ambiguous domain:
 - biologists, sociologists, economists, philosophers, etc.
- "Sustainability" can be approached with (logical) foundation of conceptual structures
 - Analytic philosophy; 'Chain of Being' (Lovejoy); 'Article' (Barth); 'Responsibility', 'Perfectibility' (Passmore), 'Association' (Jorna)
 - Analytic, semantic, logical means for a) concept self, b) development, c) concept network, d) moves and counter-moves
 - (Re)interpretation, reconstruction, semantic analysis;
 Bringing to surface conceptual developments underlying sustainability discussion and distil future course

2. Sustainability: framework (1)

- Conceptualisation
 - Attempt 1: Sustainability is a dyadic operator:
 - Sustainability = Equilibrium (Artefact, Environment)
 - Sustainable ≠ Renewable ≠ Enduring/Durable
 - "Enduring", "durable" or "renewable": monadic operator
 - "X = sustainable" is not the same as "X = enduring, durable"
- Conceptual framework, consisting of:
 - 1. Kind of artefact: entity or construct
 - 2. Goal orientation: absolute or relative
 - 3. Behaviour or interaction: static or dynamic

2. Sustainability: artefact (2)

- Kind of artefact:
 - Entity (concrete artefact): sustainable car, sustainable house
 - Construct (abstract artefact): sustainable energy, sustainable traffic (system), sustainable health care

2. Sustainability: absolute (1)

- Goal orientation (Aristotle's principle of the Absolute (Beth, 1959))
 - Absolute: continuum with non-sustainable and sustainable as extremes (ultimate Good); defines a state or purpose that is the ultimate goal achievable by human activity
 - Relative: point of reference is present state of affairs; incremental improvements; small steps instead of a grand design; not the Good, but the less worse or the better

- Aristotle's principle of the Absolute
 - "Working with the notion of an 'absolute' starts with a statement that every activity aims at accomplishing a result that is considered good (or Good), reversely some good (or Good) exists that everything aims at.
 - Three different objectives (Goods) exist:
 - activities that aim at serving a direct purpose;
 - activities that serve a purpose that is subordinate to a higher, probably unconscious, purpose;
 - and the possibility that a higher (unconscious) purpose is again subordinate to an even higher (unconscious) purpose.
 - This last step is expressed by the statement that the aim of all our activities must be the Good and even the Supreme Good" (Beth, 1959).
- Above is line of reasoning dominant in Western philosophy (classless society, free market and rationality)

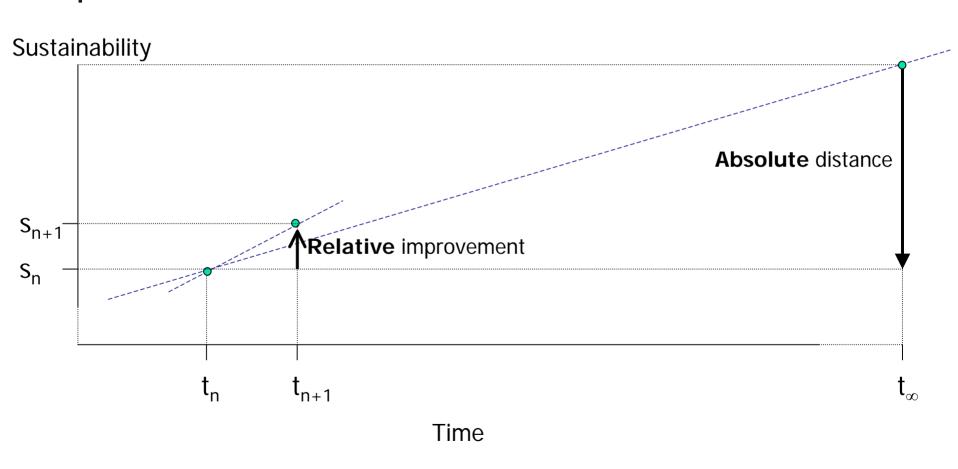
2. Sustainability: interaction

- Behavior/interaction between artefacts and environments (inner/ outer part of system)
 - Static: the artefact is dynamic or static, the environment only static (model of Club of Rome)
 - Dynamic: exogenous and endogenous forces act both on artefact and environment to change, thereby influencing the (sustainability) equilibrium

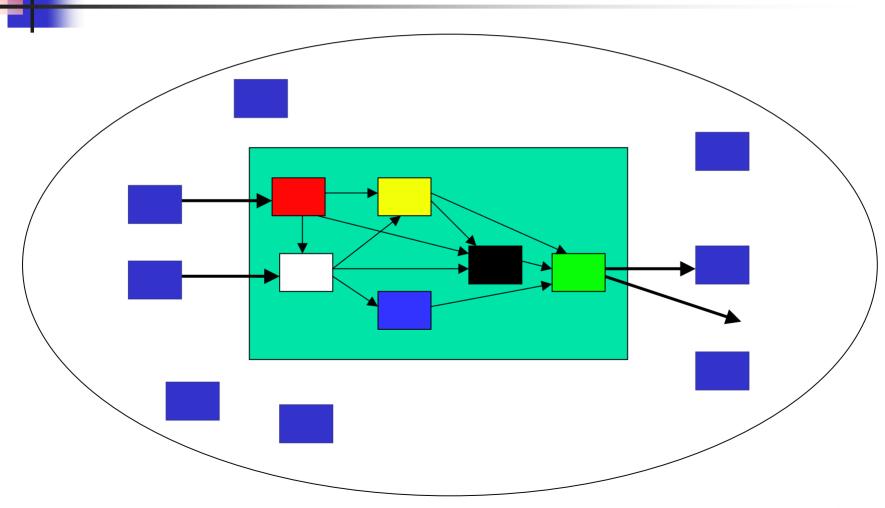
2. Sustainability: framework (2)

Artefact
Entity
Construct

Goal orientation


Absolute Relative

Behaviour, interaction


Static Dynamic

2. Sustainability: the concept

2. Sustainability: the concept

2. Sustainability: materials

- Material used for analysis and classification
 - We analyzed and classified more than 30 definitions of sustainability (theory)
 - We analyzed and classified many indicator lists and sustainability initiatives, used in investment companies and pension funds (<u>www.pggm.nl</u>; <u>www.globalreporting.org</u>; <u>www.abp.nl</u> (practice))

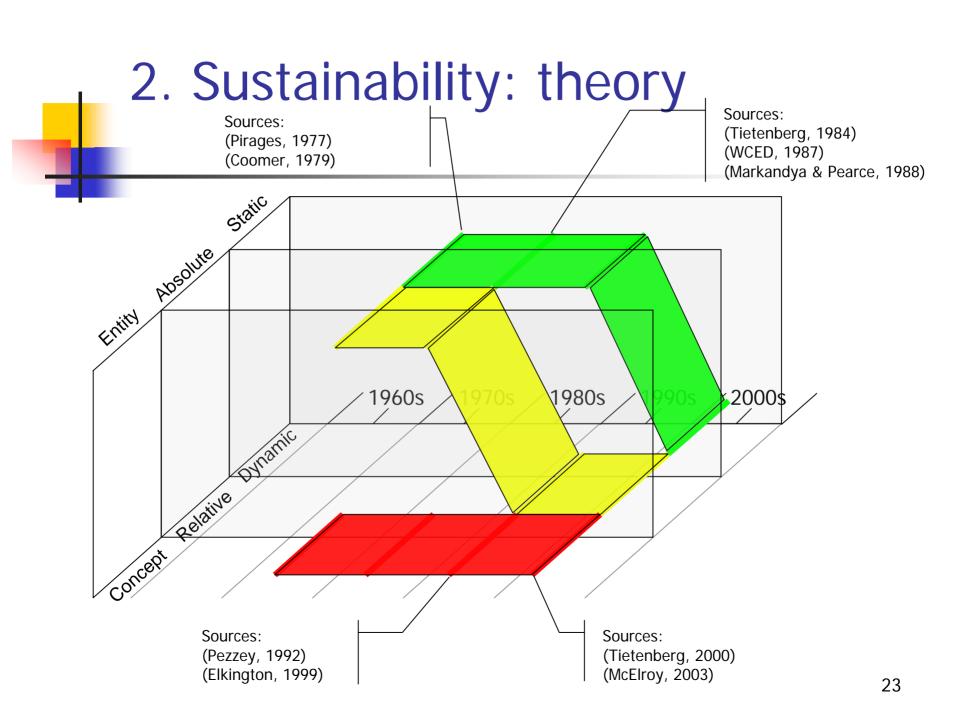
2. Sustainability: management

To compare sustainability with management concepts Bolwijn & Kumpe's (1992) classification:

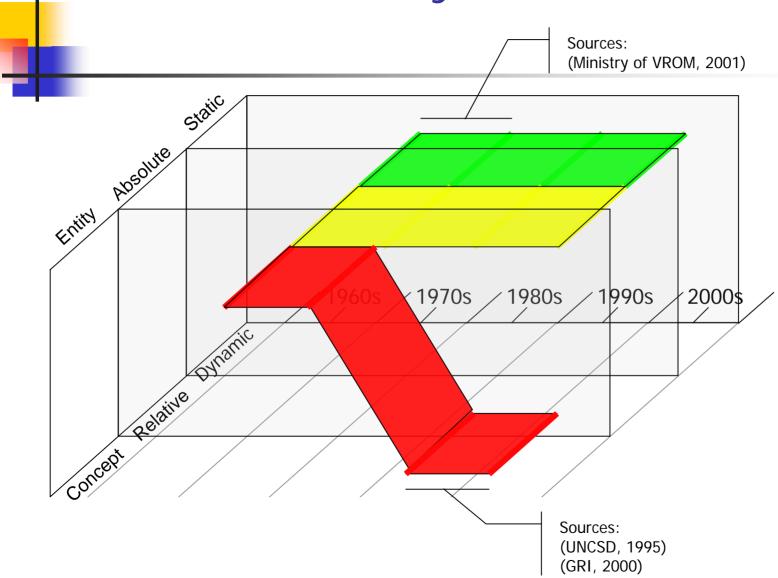
• 1960s: Efficient firm: price

1970s: Quality firm: price, quality

• 1980s: Flexible firm: price, quality, product line


1990s: Innovative firm: price, quality, product

line, uniqueness


Our extension:

2000s: Knowledge based firm: price, quality,

product line, uniqueness, customer, open

2. Sustainability: indicators

2. Sustainability: conclusions

- Conclusion: developments between 1960 2000
 - Change from
 - entity to construct (more complex)
 - absolute to relative (more complex)
 - static to dynamic (more complex)
 - The above makes the commons dilemma (self-interest versus public interest) more prominent
 - Conceptual definitions: last ≈ 10 15 years
 - Operational definitions: last ≈ 20 years
 - Operationalizations later than conceptualisations

3. Practice: NIDO

- NIDO-program: Knowledge creation for sustainable innovation.
 - Innovation (innovation is not only technology):
 - From creation/invention to implementation;
 - Process, product, service, organization, etc.
 - Knowledge: input, throughput, output of innovation
 - Sustainability: Planet, People, Profit (Elkington)
 - Within innovations enhance the **people** component in the sense of more interest for knowledge and organizations
 - Knowledge: less spill over, more knowledge access, sharing, control and use
 - Organization: better organizational forms (clan, bureaucracy, etc.), better coordination mechanisms (standardization, etc.)

3. Practice: sustainability

- Sustainability is an issue:
 - As booster or trigger for innovation
 - Planet and Profit
 - During the process of innovation
 - Planet, Profit; very little People, knowledge and organizations
 - As result from an innovation
 - Planet and Profit

- 1. Innovation of/with more sustainable techniques, materials, less energy consumption, etc.
- 2. Design, organize innovations such that they keep going, continue, that they sustain (are in dynamic equilibrium with)

3. Practice: innovation

Innovation → ↓ Renewal	Radical	Really new	Dis- continuous	Incremental	Imitative
Science / Technology	Х				
Product / Service	Х	Х	X		
Company surrounding	Х	Х		X	
Company itself	X	Х	X	X	X

- Sustainable innovation as we used it equals 2nd generation knowledge management (KM)
 - 1st generation KM: control, constrain and structure ("practice should follow policy")
 - 2nd generation KM: create, discover and open (("policy should follow practice"), see McElroy, 2003, Policy Synchronization Method = PSM)
- Emphasis on knowledge and organization: stimulate "knowledge of sustainability" with as a result "sustainability of knowledge"

3. Practice: knowledge

Innovation: chain of knowledge

	Knowledge creation	Knowledge encoding	Knowledge storage	Knowledge sharing	Knowledge maintenance	Knowledge use
Organization X	X	X	X	X	X	X
Organization Y			Х	Х		х

However, knowledge is not information

- Participating companies, organizations (NIDO-KDI)
 - Academic Hospital Groningen
 - Alfacollege (ROC)
 - ATOL
 - AVEBE
 - BiG-River/TNO in Optichem
 - BioSoil
 - GGZ/JKS/Leones

- GGZ-Drenthe
- GGZ/Trimbos
- Grontmij
- Incontext
- Kunststoffenhuis
- Philips
- Reekx

Core business:

 in situ and on-site remediation (soil treatment) by means of natural biological decomposition processes in combination with classical techniques such as filtering, separation, etc.

Advantages:

- Contamination is demolished into harmless residues
- More sustainable and cost effective in the long run
- Soil is the bioreactor, better for environment
- May lead to a better soil policy

- Examples of techniques:
 - Aerobe demolition of carbon hydrogen, such as fuel products in gas stations and refineries
 - Anaerobe demolition of chlorous solvents, e.g., in chemical laundries, metallurgical industries
- Some problems for the future:
 - Most larger cities have vast contaminated terrains
 - Policy makers know a lot of budgeting and sentiments, but have no knowledge of sustainability

- Sustainable innovation issue:
 - How to compare soil as bioreactor with traditional techniques:
 - a) dig up, excavate contamination and fill up with sand
 - b) ground topsoil and then sand or other materials
 - For local and national policy makers sustainable means: to do it quick and with low cost
 - In reviewing (approach and tender) used techniques are leading, no experiments, budget period
 - Government regulations explicitly forbid more sustainable solutions; legislation of 15 years ago

Remarkable:

- In 2003 new national soil policy: remediation possible if goal is stable end state (impossible !!)
- Next decade: large shortage of "level up sand", energy problem (price of fossil energy)
- National government is limiting budget for soil treatment and transfers it to local governments
- Research (end 2003): 600.000 polluted locations in the Netherlands, at least 60.000 are urgent

- How do we change mental and somatic health care?
- To improve patients care!
- To make it more pleasant for all workers in health care
- What is the role of innovation, sustainability and knowledge?
- BECAUSE.....

- Medical care has become prohibitive for 1 million Dutchman (next year ???)
- 3 million Dutchman do not check their teeth
- TBS'ers often unjustly in clinic
- Nursing homes provide minimal care
- And so on and on

 Above are not technological or medical problems, but organizational problems

- Some important problems in health care
 - The way we provide care (over, under, abuse)
 - The way we organize care (throughput time, shortage, communication problems, etc.)
 - The way we care (attitude, who control, empathy)
- An enormous gap exists between health care that we want and that we need
- In health care offload is "name of the game"

- Concrete problem in GGZ-Drenthe:
 - Within primary and secondary processes more and more knowledge has to be shared, however ...
 - Professionals do not structurally share knowledge
 - Very little sharing between Clinic and Academia
 - Different knowledge of psychiatrists/psychologists and socio-therapists dealing with same patient
- Under what conditions may a to be developed KM-system be able to solve some of the above knowledge problems?

	Biosoil	KSH	Optichem	Philips	AVEBE	Trimbos	CasusCons.	GGZ	AZG	Reekx	Grontmij	Atol	Incontext
'Planet'	5	2	6	2	5	0	0	0	0	0	4	0	0
'Profit'	2	3	2	3	2	1	3	3	3	5	3	3	5
'People'	3	5	2	5	3	9	7	7	7	5	3	7	5
Total	10	10	10	10	10	10	10	10	10	10	10	10	10

Sustainability valuations for 13 organizations for three P's (10 = 100%)

	Biosoil	KSH	Optichem	Philips	AVEBE	Trimbos	CasusCons.	GGZ	AZG	Reekx	Grontmij	Atol	Incontext
Sustainability of "what" (D/C)	С	С	С	d	С	С	С	С	С	С	С	С	С
A: Absolute - R: Relative	а	a/r	а	а	а	r	r	r	r	r	a/r	r	r
S: Static - D: Dynamic	d	d	d	d	d	d	d	d	d	d	d	d	d

Valuation for 13 organizations on aspects of framework

4. Operationalization: examples 1

Non sustainable = to devolve, to offload, burden transfer

Examples:

- Fossil energy: offload of emission, exhaustion to environment
- Pet-bottle; offload of waste to environment (re-fill or recycle)
- WAO-discussion (disability) NL in the 80's offload of unemployment as disability to whole society

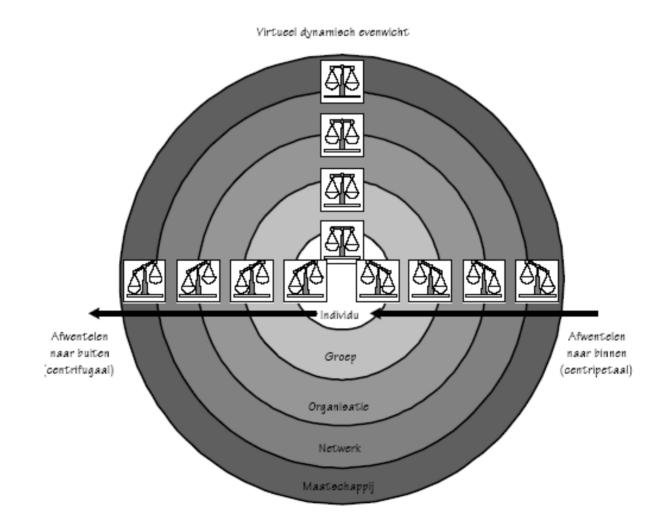
4. Operationalization: offload 1

- Operational definition of sustainability
 - Attempt 2: Reduction in offload; offload is a four-place predicate {A, B, X, t}
 - A, B are actors at same or different ontological levels
 - X is the "what": entity or construct
 - t is time horizon
 - To start reduction the various "arguments" of offload have to be determined
 - Reduction can be directed at A, B, X, t or a combination of them

4. Operationalization: ontology

- Levels of aggregation (ontological):
 - Society/Community
 - Networks
 - Organization
 - Team, Group, Unit
 - INDIVIDUAL, PERSON
 - Information processing system, CNS, senses
 - Organ systems and organs
 - Cells, Cell structures, DNA

4. Operationalization: offload 2


- (Reduction In) Offload ((RI)O) is not same as
 - Negative externalities: in economics spillover from economic activity (social cost > private cost)
 - Objection: only prices; market failure, takes market model for correct (imperfection of markets)
 - Multi-criteria decision making: e.g., Simple Multi Attribute Rating Technique (SMART, Edwards) alternatives, attributes, valuations, weighted functions, sensitivity analysis.
 - Objection: processes, interdependencies, various actors are missing

4. Operationalization: examples 2

- Offload means that a system acts with detrimental effects on the same system in future
- Examples of (reduction in) offload
 - Car driver (A) devolves on inhabitants of Delft (B) emission (X) with time horizon (t) 20 year
 - A = individual; B = group of actors; X = entity; t = years
 - Society (A) devolves on chronic patients (B) contribution increase (X) with time horizon (t) 1 year
 - A = group; B = group; X = construct; t = years

4. Operationalization: questions

- There are two issues/questions
 - 1. Determination and analysis of offload: involves determination and analysis of A, B, X and t.
 - Can be done!
 - 2. Reduction in offload: change A, B, X and/or t.
 - Some important problems to solve, e.g.,
 - What criteria to use for reduction?
 - Criteria should be epistemological, ontological, not ethical, because then not "decidable" (quantifiable)
 - How to better incorporate relational thinking as Arne Naess (1989) has suggested?

5. Conclusions

Sustainability

- There is and will be no well-defined definition
- Although claimed to be superfluous, is necessary
- "People" not (only) fairness (social resp.), but also knowledge, organization and human behavior

Innovation

- Every technological innovation has major human and organizational aspects and consequences
- Innovation has to start bottom-up, not top-down
- Sustainable innovation = 2nd generation KM
- We need more upstream innovation

5. Conclusions

- Methodology
 - A quasi-logical analysis of "sustainability" is useful
 - Notion of "offload" gives insight, but does not cure
 - Dimensions and criteria are not solved
 - Can a devolvement instrument for companies, organizations and government be developed?

Sustainable Innovation

Uitgekomen:

September 2004;

Van Gorcum, Assen

