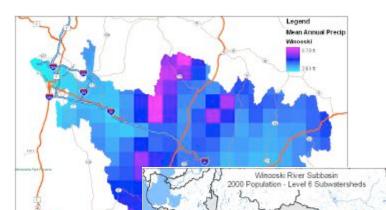
Corporate Water Gauge®

A Context-Based Solution for Measuring the Sustainability of Organizational Water Use

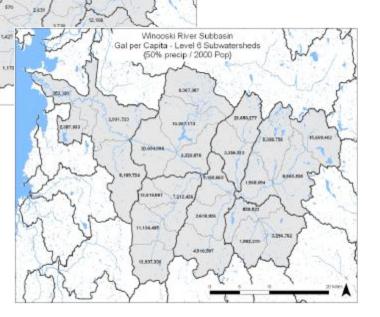
Center for Sustainable Organizations
Thetford Center, VT
November, 2012

Introduction


- A context-based metric for assessing the ecological sustainability of an organization's water use
- Based on the *context-based* approach to sustainability measurement and reporting developed by the *Center for Sustainable Organizations* (www.sustainableorganizations.org)
 - Consumption is measured against an allocation of available renewable supplies at the facility level
 - A watershed-centric approach
- Technology-enabled
 - Spreadsheet-based metric
 - GIS for spatial analysis using meteorological, topographical, population and economic datasets from scientific and gov't sources

A 4-Step Method

- Identify watershed(s) in which facilities have impact (sources and sinks of water)
- Determine net renewable water <u>supplies</u> in watershed(s) of interest, and allocate proportionate shares to facilities
- Determine net water consumption by facilities in watershed(s) of interest
- 4. Populate Corporate Water Gauge® quotient with data developed in steps 1 through 3 above, and compute sustainability scores, accordingly



Corporate Water Gauge*

GIS functionality used to determine renewable water supplies within specific watersheds, at organizational and/or facility level of analysis.

Makes innovative use of GIS tools

GIS functionality also used to determine local populations within watersheds, at organizational/facility locations of interest.

GIS functionality then used to determine per-capita levels of available renewable water resources per watershed, and/or water resources used per level of economic activity, such as per dollar of contribution to GDP

Making Allocations

- Allocations of available renewable supplies made to individual facilities based on:
 - Watershed configurations in which facilities are located
 - Volume of locally available water (via annual precipitation levels)
- Adjustments then made for:
 - Evapotranspiration
 - Ecological and non-human needs
- Allocations to human users then made in 2 ways:
 - Per capita method: according to an organization's workforce size
 - Economic method: according to an organization's contributions to GDP

Organization/Facility Name: TransGlobal, Inc./U.S. Plant

Year of Analysis: 2008

Hydrological Unit #1: Braintree Subwatershed Level 6
Hydrological Unit #2: Delta River Subbasin Level 4

Quotient Scores

Per Capita (Level 6)

- Numerator - Denominator 25,550,000 = 0.78*

Economic (Level 4)

Intensity (Level 6)

- Numerator 25,550,000 = 0.26 gals./ - Denominator 99,600,000 = unit

*Scores of ≤1.0 are sustainable; scores of >1.0 are unsustainable.

Background Data

e.g., precipitation, population and economic data.

Numerators			
	Braintree L6	Delta River L4	
- On-site in (gals.)	15,700,000	15,700,000	
- Municipal in (gals.)	32,500,000	32,500,000	
- On-site out (gals.)	(10,500,000)	(10,500,000)	
- Municipal out (gals.)	(12,150,000)	(15,900,000)	
Net Consumption (gals.)	25,550,000	21,800,000	

Denominators			
	Braintree L6	Delta River L4	
Per Capita (Level 6) (gals.)	32,800,000		
Economic* (Level 4) (gals.)		98,440,000	
Intensity (Level 6) - Production vol. (units)	99,600,000		

Key Principles

- Sustainability of water use should be grounded in knowledge of site-specific precipitation levels
- Renewable supplies should be determined by reference to associated watershed boundaries
- Stocks of surface and groundwater resources should be preserved and not drawn down
- Human use of water resources should be balanced with ecological needs
- Water use should be measured against available renewable supplies that are allocated to individual facilities using per capita and/or economic criteria

Advantages Over Other Tools

- Complements other risk- or stress-related tools
- Measures sustainability performance with local context taken fully into account (i.e., is context-based)
 - Assesses water use in terms of locally available renewable supplies, which are allocated to individual facilities in per capita or economic terms
 - Makes it possible to score sustainability performance at a local, regional, national, global, and enterprise-wide level with local contexts taken fully into account
- Makes use of advanced GIS tools in combination with site-specific datasets

What Form Does It Take?

An integrated offering:

- An advanced, context-based water sustainability metric embodied in a spreadsheet
- A GIS technique for measuring water use and supply in watersheds (using third-party datasets)
- A consulting service for teaching and/or using the Corporate Water Gauge® (CWG)

Output:

- Spreadsheet files with computed sustainability scores
- Graphical depictions of relevant watershed areas and data
- Relevant GIS shapefiles w/site-specific data
- Methodology/license for using the CWG

How Can a Company Acquire It?

- Perpetual, non-exclusive licenses to obtain and use the Corporate Water Gauge[®] are granted to clients who engage us to either:
 - Provide related training, or
 - Assist with at least one application at a site of their choosing
- Minimum fees apply
- When used independently of our assistance, clients must provide their own GIS and spreadsheet systems
 - ArcGIS and related datasets
 - Microsoft Excel

Contact us for more info!

Mark W. McElroy, Ph.D. mmcelroy@vermontel.net

www.sustainableorganizations.org

